Nonparametric Bayesian robustness

نویسندگان

  • Pilar Loreto Iglesias
  • Fabrizio Ruggeri
  • F. Ruggeri
چکیده

A new, nonparametric, approach to Bayesian robustness is presented. Whereas many studies in Bayesian robustness have dealt with a parametric sampling distribution, considering classes of prior distributions on the parameters, here we assume that the sampling distribution comes from a Dirichlet process with a parameter η = βα, with β > 0 and α being a probability measure, specified with uncertainty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

Infinite Latent Harmonic Allocation: A Nonparametric Bayesian Approach to Multipitch Analysis

Maximum a posteriori estimation (MAP) Point estimates Manually specified Manually specified Modest Classical Bayesian estimation Posterior distributions Manually specified Manually specified Good (1) Nonparametric Bayesian estimation Posterior distributions Posterior distributions ―――― Excellent (2) Hierarchical Posterior distributions ―――― Posterior distributions Excellent Parameters Complexit...

متن کامل

Some Results on Nonparametric Bayesian Robustness

As the parameter of a Dirichlet process varies in a class, we propose and compute a global sensitivity measure based on the Hellinger distance and we find optimal Bayesian estimators (under different criteria) of the random distribution function.

متن کامل

Nonparametric Bayesian Clustering Ensembles

Forming consensus clusters from multiple input clusterings can improve accuracy and robustness. Current clustering ensemble methods require specifying the number of consensus clusters. A poor choice can lead to under or over fitting. This paper proposes a nonparametric Bayesian clustering ensemble (NBCE) method, which can discover the number of clusters in the consensus clustering. Three infere...

متن کامل

Nonparametric Bayesian Models for Machine Learning

Nonparametric Bayesian Models for Machine Learning by Romain Jean Thibaux Doctor of Philosophy in Computer Science and the Designated Emphasis in Communication, Computation and Statistics University of California, Berkeley Professor Michael I. Jordan, Chair This thesis presents general techiques for inference in various nonparametric Bayesian models, furthers our understanding of the stochastic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010